

CURSOS MONOGRAFICOS

CÓMO INCLUIR EN MI VIDA EL USO DE *SOFTWARES* DE TRAZADO DE RAYOS. APLICACIONES CLÍNICAS

Sofía Zaira Otín Mallada PhD, óptico-optometrista.

OBJETIVO GENERAL:

Formar a los profesionales ópticos-optometristas en el manejo de un *software* de diseño de sistemas ópticos en el que pueden simular sistemas ópticos y proporcionarles las estrategias para analizar su comportamiento óptico para conocer, por ejemplo, qué resultado visual pueden esperar basado en el cálculo de aberraciones con el fin de optimizar sus decisiones.

OBJETIVOS ESPECÍFICOS:

- Aprender a representar con un software de trazado de rayos y diseño óptico sistemas ópticos.
- Aprender a representar con el software OSLO[®] (Lambda Research) formados por ojo-montura-lente.
- Aprender a interpretar los parámetros de calidad óptica y visual que ofrecen programas de trazado de rayos y plantearles escenarios de cómo pueden aplicarlos en su práctica diaria.

RESUMEN:

- 1. Presentación del profesorado y de diferentes softwares de trazado de rayos. Se presentará especificamente el *software* de acceso libre que se usará en la actividad (OSLO®):
- ¿Qué significa cada pestaña y casilla en el programa?
- Cómo se crea un sistema óptico ojo-lente en OSLO®. Se explicarán brevemente los conceptos básicos para representar un sistema óptico.

NOTA: no existe interés comercial en este *software* por parte de las ponentes. Se propone éste porque es un recurso de acceso gratuito y libre descarga, muy útil para llevar a cabo la explicación y posible aplicación por los interesados. Se describirán otros softwares disponibles en el mercado.

2. Simulación de diferentes sistemas ópticos formados por ojo lente oftálmica y ojo lente de contacto. Interpretación de los resultados que ofrece el programa.

CURSOS MONOGRAFICOS

- Cómo calcular Mo, Jo y J45 a partir de los datos que ofrecen los programas de trazado de rayos.
- Análisis de la calidad óptica de un sistema óptico: Coeficientes de Zernike, RMS, Razón de Sthrel y PSF.
- Se explicará, cómo extraer los resultados del análisis de calidad óptica y cómo interpretarlos. Se debatirán uno a uno como influyen en la adaptación del paciente a la compensación óptica correspondiente y de que depende, siempre mostrando ejemplos de situaciones reales.

Ejemplo: Simular una lente de stock de -3D de base +4D y comparar la calidad óptica si el sistema está correctamente alineado, eje óptico de la lente con eje visual, y el caso opuesto, como por ejemplo ocurriría en el caso de colocar esa lente en una montura con un ángulo pantoscópico o facial de 15º

- 3. Resolución de preguntas propuestas por el alumnado. Cumplimentación de un breve cuestionario de conocimientos y satisfacción.
- Para conocer si se han cumplido los objetivos en cuanto a la enseñanza se realizará un pequeño test de conocimientos
- Para conocer el grado de satisfacción del alumnado con el contenido del curso y su utilidad para la aplicación en su práctica diaria se realizará una encuesta.

Para un mejor aprovechamiento del curso, previamente al mismo, se enviará a los participantes material (enumerado a continuación) con el objetivo de que conozcan las características del programa que se va a utilizar y podamos aprovechar durante el desarrollo del curso a dar respuesta a las preguntas que puedan haberse cuestionado previamente.

EL MATERIAL ESTARÁ FORMADO POR:

- Un video-tutorial explicando:
- Cómo pueden descargar el programa en sus ordena-
- Los primeros pasos para una representación de un sistema óptico y ver el trazado de rayos.
- Cómo pueden guardar y abrir un archivo en el formato del programa .len.
- Un breve manual en pdf explicando los ítems que deben ajustarse y cómo para representar una lente.
- Encuesta de expectativas (qué espero aprender y a qué me gustaría dar respuesta en este curso).

ORGANIZA:

AVALA:

