

COMUNICACIÓN ORAL

VALIDACIÓN DE UN SOFTWARE DE CÁLCULO DE LA ALTURA SAGITAL PARA LA ADAPTACIÓN DE LENTES DE CONTACTO BLANDAS

Autores:

VICENTE BERBEGAL GARCÍA. Teixidó Òptiques. Tarragona. España.

LAURA BATRES VALDERAS. Universidad Complutense de Madrid. España.

JUAN GONZALO CARRACEDO RODRÍGUEZ. Universidad Complutense de Madrid. Madrid. España.

Tipo de comunicación:

Comunicación oral

Área temática:

SEGMENTO ANTERIOR, LENTES DE CONTACTO Y TECNOLOGÍAS DIAGNÓSTICAS

Subárea temática:

Superficie Ocular

Palabras clave:

altura sagital, ságita, lentes de contacto blandas

OBJETIVO:

El objetivo principal de este estudio fue comparar la ságita calculada con un nuevo *software* para calcular la altura sagital, con un módulo escleral de un topógrafo de *Scheimpflug* a diferentes cuerdas.

MÉTODOS:

Se ha realizado un estudio descriptivo, prospectivo y transversal. Cincuenta y cinco sujetos (31 mujeres y 24 hombres) fueron reclutados en la Clínica de Optometría de la Facultad de Óptica y Optometría (UCM). La edad media fue de 39,77 ± 15,56 años (rango 16-75 años). Los criterios de inclusión fueron la edad entre 15 y 75 años sin ninguna patología de la superficie ocular. Se excluyeron los sujetos que usaban ortoqueratología y lentes de contacto esclerales y presentaban pterigium o pinguécula. Todas las variables se midieron en el mismo horario diurno para cada sujeto. Se tomaron tres mediciones de un ojo aleatorio con el topógrafo *Scheimpflug* y de disco de Plácido. Se midió la queratometría

COMUNICACIÓN ORAL

simulada y la excentricidad en los meridianos principales y el diámetro de la córnea con el topógrafo de disco de Plácido. La medida de la altura sagital a 14, 14,50 y 15 mm y la simetría escleral se realizaron con el módulo escleral de un topógrafo *Scheimpflug*. Se utilizaron datos de queratometría y excentricidad para calcular la altura sagital en diferentes cuerdas con el *software*.

RESULTADOS:

Una vez realizado el análisis de regresión, no se encontraron diferencias entre el cálculo del *software* y la medición de *Scheimpflug* para ninguna de las cuerdas y meridianos analizados (p>0.05). En la cuerda de 10 mm la diferencia la diferencia fue de 0,33 \pm 29,00 μ m en el meridiano plano y de 0,00 3 31,38 μ m en el meridiano curvo. La diferencia a 14 mm fue de 6,01 \pm 101,32 μ m y -0,03 \pm 88,51 μ m para los meridianos planos y cerrado, respectivamente. Para la cuerda a 14,50 mm, la diferencia en la altura sagital fue de -0,86 \pm 93,96 μ m y -1,24 \pm 1 02,32 μ m, para el meridiano plano y cerrado respectivamente. Para 15 mm, la diferencia fue de -1,12 \pm 101,13 μ m y 0,07 \pm 113,79 μ m, para los meridianos plano y cerrado respectivamente. El astigmatismo corneal influyó en el error entre la medición real y el cálculo, excepto en el meridiano cerrado de la cuerda de 15 mm.

CONCLUSIONES:

El nuevo *software* es capaz de estimar la altura sagital en córneas regulares a diferentes cuerdas utilizando la excentricidad y la queratometría de un topógrafo corneal de disco de Plácido, siendo una gran herramienta para seleccionar la mejor adaptación de lentes de contacto blandas.

ORGANIZA:

AVALA:

