

COMUNICACIÓN ORAL

Autores:

MARTA JIMÉNEZ GARCÍA. Instituto de Investigación Sanitaria de Aragón, Zaragoza. España.

Tipo de comunicación:

Comunicación oral

Área temática:

SEGMENTO ANTERIOR, LENTES DE CONTACTO Y TECNOLOGÍAS DIAGNÓSTICAS

Subárea temática:

Superficie Ocular

Palabras clave:

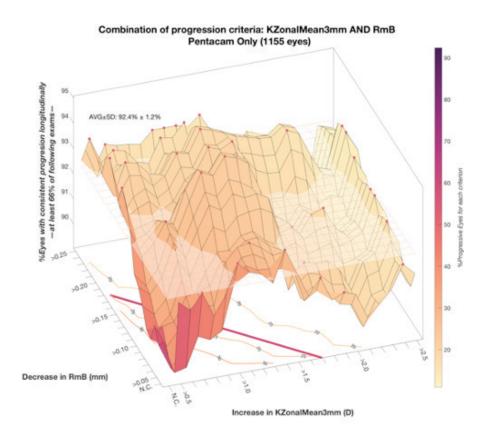
Queratocono, cross-linking, progresión

JUSTIFICACIÓN Y OBJETIVOS:

La invención del *crosslinking* corneal (CXL) ha sido uno de los grandes avances en el tratamiento del queratocono (KC), sin embargo, su eficiencia se ha puesto en tela de juicio. Las revisiones *Cochrane* más recientes indican que la evidencia del CXL es limitada, no hay consenso en qué KC necesitan un CXL o en cómo establecer la progresión. El ruido en las medidas que podemos obtener en KC sólo añade una nueva complicación. Este estudio pretende verificar el rendimiento de diversos criterios de progresión y comprobar hasta qué punto éstos están en consonancia con el conocimiento clínico previo acerca de la evolución natural del gueratocono.

MATERIAL Y MÉTODOS:

Estudio retrospectivo longitudinal; 743 KC medidos con *Pentacam*. Se analizaron diversos criterios de progresión habituales basados en (combinaciones de) máxima queratometría (K_{MAX}), astigmatismo corneal anterior (A_F), y mínima paquimetría (P_{MIN}), o basados en *ABCD Progression Display*. Para cada criterio y punto de corte, se calculó el porcentaje de ojos marcados como progresivos en algún momento (R_{PROG}), la consistencia individual C_{IND} (i.e., porcentaje de exámenes tras la primera detección de progresión que serían considerados progresivos), y la consistencia poblacional C_{POP} (porcentaje de ojos con C_{IND} > 66%). Finalmente se analizó el comportamiento de variables monótonas y consistentes para definir la progresión en KC, tales como la queratometría curva (K2F) la queratometría en un área de 3 mm entorno a K_{MAX} ($K_{ZONAL3mm}$), y el radio promedio de la superficie posterior (RmB).



COMUNICACIÓN ORAL

RESULTADOS:

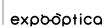
Usar un solo criterio (e.g. ΔK_{MAX} >1D) lleva a valores demasiado altos de R_{PROG} , a menos que el punto de corte esté por encima de la repetitividad. Al requerir dos criterios simultáneamente, (K_{MAX} AND A_F), tuvo peor C_{POP} y más variabilidad que (K_{MAX} AND P_{MIN}); criterios alternativos como ($K_{ZONAL3mm}$ AND RmB) o ($K_{ZONAL3mm}$ AND RmB) o ($K_{ZONAL3mm}$ AND RmB) o btuvieron la mejor C_{POP} y menor variabilidad (Figura~1, p < 0.0001). ABCD tal y como lo definieron sus autores, obtuvo un R_{PROG} de 74.2%, demasiado alto. Utilizar intervalos de confianza 95% (95CI) más amplios y requerir dos parámetros ABC por encima del 95CI redujo R_{PROG} a un 27.9%, más realista.

CONCLUSIONES:

Estudios previos que han reportado pérdida de agudeza visual, cambios en los parámetros de las lentes de contacto, incidencia de cicatriz corneal o necesidad de trasplante corneal sugieren que un 20-35% de los KC son progresivos. Estos rangos de R_{PROG} deberían ser tenidos en cuenta a la hora de definir la progresión en KC para evitar sobretratar a estos pacientes. Utilizando combinaciones de variables alternativas, o 95CI más amplios para ABCD, puede llevarse a un rango más cercano al observado en estudios clínicos previos. Además, estos nuevos enfoques, obtuvieron mejor consistencia poblacional que las definiciones habituales.

ORGANIZA:

ÓPTICOS
OPTOMETRISTAS
Consejo General



COLABORA:

