

COMUNICACIÓN e-POSTER

ANÁLISIS DE LA VISIÓN EN PACIENTES POSCIRUGÍA DE CATARATAS Y MEMBRANA EPIRRETINIANA CON IMPLANTE DE LENTE INTRAOCULAR *VIVITY*® DE VISIÓN EXTENDIDA

Autores:

MERITXELL VÁZQUEZ LÓPEZ. Hospital General de Catalunya - OMIQ R. Barcelona. España. SERGI RUIZ MEGIAS. Hospital General de Catalunya - OMIQ R. Barcelona. España. ELENA LÓPEZ GARCÍA. Hospital General de Catalunya - OMIQ R. Barcelona. España. MARC BIARNES PÉREZ. Hospital General de Catalunya - OMIQ R. Barcelona. España. MERCE GUARRO MIRALLES. Hospital General de Catalunya - OMIQ R. Barcelona. España.

Tipo de comunicación:

Comunicación en e-póster

Área temática:

SEGMENTO ANTERIOR, LENTES DE CONTACTO Y TECNOLOGÍAS DIAGNÓSTICAS

Subárea temática:

Intervención optométrica en cirugía ocular

Palabras clave:

Agudeza visual, lente intraocular visión extendida, halo visual

RESUMEN:

Se pretende analizar si la lente intraocular (LIO) *Vivity®* de visión extendida proporciona una buena agudeza visual (AV) en pacientes con cirugía (IQ) combinada de retina (membrana epirretiniana - MEM) y catarata en un ojo e IQ de catarata en el otro ojo. También describir la AV monocular y binocular, corregida y no corregida en distancia lejana, intermedia y cercana. Por último, describir la percepción subjetiva monocular y binocular de halo.

MATERIAL Y MÉTODOS:

Se diseñó un estudio piloto prospectivo, descriptivo, de un solo brazo, con seguimiento de hasta 6 meses tras la implantación de LIO. El estudio evaluó a pacientes con cataratas bilaterales y MEM monocular, vitrectomizado. Para evaluar la AV se utilizaron optotipos ETDRS (para todas las distancias, en unidad logMAR), optotipo ETDRS de bajo contraste (visión intermedia y cercana, en unidad logMAR), optotipo Pelli Robson y Halómetro (Light Distortion Analyzer). Fue implantada LIO *Vivity*® en todos los ojos.

COMUNICACIÓN e-POSTER

El test de Shapiro-Wilk fue utilizado para valorar la normalidad de cada métrica, incluyendo la media y la desviación estándar (DE) para cada parámetro evaluado; la prueba t de Student para datos pareados y la prueba de Wilcoxon en los casos en que el análisis paramétrico no era posible.

RESULTADOS:

Se incluyeron 22 pacientes de 71.4 ± 5.7 años, el 50% de género femenino y con presencia de MEM monocular y catarata binocular. A los 6 meses post cirugía se obtuvo: media de AV lejana sin corrección (AVLSC) y con corrección (AVLCC); AV intermedia sin corrección (AVISC) y con corrección (AVICC); y AV cercana sin corrección (AVCSC) y con corrección (AVCCC), tanto monocular como binocularmente (tabla 1).

idas atorias	sin MEM		Media	DE	idas atorias	MEM		Media	DE				
Medidas preoperatorias	Ojo sin	AVLCC monocular	0.10	0.10	Medi		AVLCC monocular	0.27	0.15			Media	DE
	Ojo con MEM	AVLSC monocular	0.09	0.14		post 6	AVLSC monocular	0.12	0.12	Medidas post 6 meses cirugía (Binocular)	AVLSC binocular	0.03	0.13
Medidas post 6 meses IQ		AVISC monocular	0.18	0.10	das post eses IQ		AVISC monocular	0.22	0.09		AVISC binocular	0.10	0.08
		AVCSC monocular	0.37	0.18			AVCSC monocular	0.46	0.13		AVCSC binocular	0.28	0.15
		AVLCC monocular	0.02	0.08			AVLCC monocular	0.07	0.09		AVLCC binocular	-0.01	0.07
ă -		AVICC monocular	0.19	0.11	Me	ojo	AVICC monocular	0.23	0.10		AVICC binocular	0.10	0.08
		AVCCC monocular	0.41	0.18			AVCCC monocular	0.48	0.14		AVCCC binocular	0.30	0.15

Fueron significativas las diferencias en las AVLCC preoperatorias entre los ojos con y sin MEM; también entre AVCCC y AVCSC post 6 meses tras IQ (tabla 2).

Tabla 1

	Estadística Comparativa Monocular (Ojo sin MEM vs Ojo con MEN					
	Valor-p No MEM vs Sí MEM					
AVLCC preoperatoria	0,002*					
AVLSC postoperatoria 6 meses	0,288					
AVISC postoperatoria 6 meses	0,991					
AVCSC postoperatoria 6 meses	0,037*					
AVLCC postoperatoria 6 meses	0,075					
AVICC postoperatoria 6 meses	0,565					
AVCCC postoperatoria 6 meses	0,048*					

Tabla 2

Las diferencias entre los valores medios de sensibilidad al contraste con Pelli Robson y de AV de bajo contraste para los ojos con y sin MEM no eran significativas (*tabla 3*).

COMUNICACIÓN e-POSTER

Estadística de	Comparativa Ojo sin MEM vs Ojo con MEM							
	Ojo sin MEM		Ojo con MEM		Binocular			
	Media	DE	Media	DE	Media	DE	Valor P	
Pelli Robson	1.55	0.11	1.51	0.12	1.64	0.06	0.834	
AV Bajo Contraste (66cm)	0.67	0.18	0.71	0.13	0.57	0.14	0.089	
AV Bajo Contraste (40cm)	0.73	0.18	0.80	0.17	0.66	0.13	0.970	

Tabla 3

Las diferencias entre los índices del Halómetro para los ojos con y sin MEM, donde los índices eran mayores para los primeros, no eran significativas (Tabla 4).

Estadística descr	Comparativa Ojo sin MEM							
	Ojo sin MEM		Ojo con MEM		Binocular		vs Ojo con MEM	
	Media	DE	Media	DE	Media	DE	Valor P	
Índice Distorsión de la Luz (IDL %)	13.81	15.88	14.38	13.62	11.48	14.47	0.833	
Radio del círculo que mejor se ajusta (%)	27.87	11.92	29.20	10.91	24.79	12.07	0.752	
Irregularidad del radio del círculo que mejor se ajusta (mm)	0.49	0.34	0.71	1.04	0.39	0.27	0.054	

Tabla 4

CONCLUSIONES:

Podemos concluir que los pacientes mejoraron su AVLCC 6 meses posoperatoria respecto a su AVLCC preoperatoria. En este estudio piloto se observan diferencias clínicamente poco significativas en los resultados obtenidos entre ojos con y sin MEM, a pesar de que no son estadísticamente significativas. Futuros estudios con tamaño muestral mayor son necesarios para corroborar que las diferencias no son clínicamente significativas.

ORGANIZA:

AVALA:

COLABORA:

